Genesys™

Programmable DC Power Supplies 3.3KW in 2U Built in RS-232 & RS-485 Interface Advanced Parallel Standard

Optional Interfaces:
IEEE488.2 SCPI (GPIB)
Isolated Analog Programming
L∭ Compliant LAN

TDK-Lambda

The Genesys™ family of programmable power supplies sets a new standard for flexible, reliable, AC/DC power systems in OEM, Industrial and Laboratory applications.

Features include:

- High Power Density 3.3kW in 2U
- Wide Range of popular worldwide AC inputs, 1ø (230VAC) & 3ø (208VAC, 400VAC)
- Active Power Factor Correction (Single-Phase & Three-Phase AC Input)
- Output Voltage up to 600V, Current up to 400A
- Built-in RS-232/RS-485 Interface Standard
- Global Commands for Serial RS-232/RS-485 Interface
- Auto-Re-Start / Safe-Start: user selectable
- Last-Setting Memory
- High Resolution 16 bit ADCs & DACs
- Low Ripple & Noise
- Front Panel Lock selectable from Front Panel or Software
- Reliable Encoders for Voltage and Current Adjustment
- Constant Voltage/Constant Current auto-crossover
- Parallel Operation with Active Current Sharing; up to four identical units.
- Advanced Parallel Master / Slave. Total Current is Programmed and Measured via the Master.
- Independent Remote ON/OFF and Remote Enable/Disable
- External Analog Programming and Monitoring (user selectable 0-5V & 0-10V)
- Reliable Modular and SMT Design
- 19" Rack Mount capability for ATE and OEM applications
- Optional Interfaces

Isolated Analog Programming and Monitoring Interface (0-5V/0-10V & 4-20mA) IEEE 488.2 SCPI (GPIB) Multi-Drop

LXI™ Compliant LAN

- LabView[®] and LabWindows[®] drivers
- Five Year Warranty

Worldwide Safety Agency Approvals; CE Mark for LVD and EMC Regulation

Applications

Genesys™ power supplies have been designed to meet the demands of a wide variety of applications.

System Designers will appreciate new, standard, remote programming features such as Global commands. Also, new high-speed status monitoring is available for the RS-485 bus.

Test Systems using the IEEE-488 bus may achieve significant cost savings by incorporating the Optional IEEE Multi-Drop Interface for a Master and up to 30 RS-485 Multi-Drop Slaves.

Higher power systems can be configured with up to four 3.3kW modules. Each module is 2U with zero space between them (zero stack).

Flexible configuration is provided by the complete Genesys™ Family: 1U 750W Half-Rack, 1U 750W and 1500W Full-Rack. All are identical in Front Panel, Rear Panel Analog, and all Digital Interface Commands.

OEM Designers have a wide variety of Inputs and Outputs from which to select depending on application and location.

Front Panel Description

- 1. ON/OFF Switch
- 2. Air Intake allows zero stacking for maximum system flexibility and power density.
- 3. Reliable encoder controls Output Voltage, Address, OVP and UVL settings.
- 4. Volt Display shows Output Voltage and directly displays OVP, UVL and Address settings.
- 5. Reliable encoder controls Output Current, sets baudrate and Advanced Parallel mode.
- 6. Current Display shows Output Current and displays Baud rate. Displays total current in Parallel Master/Slave Mode
- 7. Function/Status LEDs:
 - Alarm
- Fine Control
- Preview Settings

- Foldback Mode
- Remote Mode
- Output On
- 8. Pushbuttons allow flexible user configuration
 - Coarse and Fine adjustment of Output Voltage/Current and Advanced Parallel Master or Slave
 - Preview settings and set Voltage/Current with Output OFF, Front Panel Lock
 - Parallel Master/Slave
 - Set OVP and UVL Limits
 - Set Current Foldback Protection
 - Go to Local Mode and select Address and Baud rate
 - Output ON/OFF and Auto-Re-Start/Safe-Start Mode

Rear Panel Description

- 1. Remote/Local Output Voltage Sense Connections.
- 2. DIP Switches select 0-5V or 0-10V Programming and other functions.
- 3. DB25 (Female) connector allows (Non-isolated) Analog Program and Monitor and other functions.
- 4. RS-485 OUT to other Genesys™ Power Supplies.
- 5. RS-232/RS-485 IN Remote Serial Programming.
- 6. Output Connections: Rugged busbars (shown) for up to 100V Output; wire clamp connector for Outputs >100V.
- 7. Exit air assures reliable operation when zero stacked.
- 8. Input: 230VAC Single Phase (shown), 208 & 400VAC Three Phase, 50/60 Hz
 AC Input Connector: PHOENIX CONTACT Power Combicon PC 6/... Series with strain relief.
- 9. Optional Interface Position for IEEE 488.2 SCPI (shown) or Isolated Analog Interface or LAN Interface.

Genesys TM 3.3kW Specifications

1.0 MODEL	GEN	8-400	10-330	15-220	20-165	30-110	40-85	60-55	80-42	100-33	150-22	300-11	600-5.5
1.Rated output voltage(*1)	V	8	10	15	20	30	40	60	80	100	150	300	600
2.Rated Output Current(*2)	A W	400	330	220	165	110	85	55	42	33	22	11	5.5
3.Rated Output Power	VV	3200	3300	3300	3300	3300	3400	3300	3360	3300	3300	3300	3300
.1 CONSTANT VOLTAGE MODE													
1.Max.line regulation (0.01% of rated Vo+ 2mV)(*6)	mV	2.8	3	3.5	4	5	6	8	10	12	17	32	62
2.Max load regulation (0.015% of rated Vo+5mV)(*7)	mV	6.2	6.5	7.25	8	9.5	11	14	17	20	27.5	50	95
3.Ripple and noise p-p 20MHz (*8)	mV	60	60	60	60	60	60	60	80	80	100	150	500
4.Ripple r.m.s 5Hz~1MHz 5.Remote sense compensation/wire	mV V	8 2	8 2	8	2	8	8	8	8	8	25	35	120
	PPM/°C		/°C of rated	2 Loutput vol		ing 30 mir	5 nutes warm	-up	5	5	5	5	5
7.Temp. stability	1 1 101/ 0		f rated Vou						nstant line	, load & ter	np.		
8.Warm-up drift		Less tha	n 0.05% of	rated outp	ut voltage+	2mV over	30 minutes	following	power On.				
9.Up-prog. response time, 0~Vo Rated (*9)	mS				0					150			250
10.Down-prog response time Full-load (*9)	mS	20	000	100	1 000	200	160	4400	4000		00	1 0500	500
No-load (*10) 11.Transient response time	mS mS	500	600 output volta	700	800	900	1000	1100	1200	1500	2000	3500	400
11. Transient response unie	1110	current. (Output set-p n 1mSec fo	oint: 10-10	00%, local	sense.					ated output		
.2 CONSTANT CURRENT MODE		Less trial	II IIIISEC IO	i illoueis u	o to and in	cluding 10	UV. ZIIISEC	ioi models	above 10	10 V			
1.Max.line regulation (0.01% of rated lo+ 2mA)(*6)	mA	42	35	24	18.5	13	10.5	7.5	6.2	5.3	4.2	3.1	2.6
2.Max.load regulation (0.02% of rated lo+5mA)(*11)	mA	85	71	49	38	27	22	16	13.4	11.6	9.4	7.2	6.1
3.Ripple r.m.s 5Hz~1MHz . (*12)	mA	1300	660	440	300	250	200	100	120	90	60	50	10
4.Load regulation thermal drift	DD: : : : :		n 0.1% of r						ange.				
	PPM/°C		I/°C from ra f rated lout						notont lin -	lood 0 to	norot		
6.Temp. stability 7.Warm-up drift			rated lout models: Les					<u> </u>			ірегасиге.		
7.warm-up driit			OV models:								On.		
1.3 PROTECTIVE FUNCTIONS		,	,							3,			
1. OCP			Constant C										
2. OCP Foldback			hut down w										
3. OVP type			shut-down,										T = 000
OVP trip point Output Under Voltage Limit			0.5~12V y front pane	1~18V	1~24V	2~36V	2~44V	5~66V	5~88V	5~110V	5~165V	5~330V	5~660
6. Over Temp. Protection			ectable , la			JOIL I IEVE	into iroini ac	ajusting vo	at below iii	iiiit.			
5.On/Off control (rear panel) 6.Output Current monitor (*13) 7.Output Voltage monitor 8.Power Supply OK signal 9. CV/CC Indicator 10. Enable/Disable 11. Local/Remote analog control 12. Local/Remote analog control Indicator .5 FRONT PANEL 1.Control functions		0-5V or 0-5V or 0-5V or 10-5V or 10-5V or 10-5V or 1TL high CV: TTL Dry cont By electr Open cc Vout/ lot OVP/UV On/Off, (Address Re-start Baud rat Voltage; Current:	rical. Voltag 0-10V, Ac 0-10V, Ac 0-10V, Ac 0-10V, Ac 0 (4-5V)-00 high (4-5V act. Open: crical signal of illector, Loc ut manual a L manual a Dutput on/o selection b modes (aul e selections) 4 digits, Ac 4 digits, Ac	curacy:±1% uracy:=1%K, OV-Fail) source: 1 off, Short: cor Open/Stal: Off, Rer dijust by se dijust by Vot ff, Re-start y Voltage (tomatic rese 1200,2400 couracy: 0.5 curacy: 0.5 curacy: 0.5	6 , user sele , us	ectable. cctable. cries resist TTL low (Co bitage at E V or short: Maximum v oders (coa ncoder. uto, safe), i adjust enc node). 00 and 19,4 d output cu	rance. 0.6V), sinnable/Disat Remote, 4- voltage: 30V arse and fin Foldback cc coder. Num 200. bltage ±1 cc trent ±1 col	k current: ole in: 6V. ~5V or opee V, maximur e adjustme control (CV ber of additional) count.	n: Local. In sink curr ent selecta to CC), Goresses:31.	ble).			
3.Indications			Current, Al		Preview, F	oldback, L	ocai, Outpu	it On, Fron	t Panei Lo	ick, CVCC.			
I.6 Interface RS-232&RS-485 or Option	onal G	PIB / L <i>F</i> 8	AN Inter	15 15	20	30	40	60	80	100	150	300	600
1. Remote Voltage Programming (16 bit)													
Resolution (0.012% of Vo Rated)	mV	0.96	1.2	1.8	2.40	3.60	4.80	7.2	9.6	12	18	36	72
Accuracy (0.05%Vo Rated+0.05% of Vo Actual Output)	mV	8	10	15	20	30	40	60	80	100	150	300	600
2. Remote Current Programming (16 bit)													
Resolution (0.012% of lo Rated)	mA	48	39.6	26.4	19.8	13.2	10.2	6.6	5.0	4.0	2.6	1.3	0.7
Accuracy (0.2% of lo Rated+0.1% of lo Actual Output) (*13)	mA	1200	990	660	495	330	255	165	126	99	66	33	16.
3. Readback Voltage													
Resolution (0.012% of Vo Rated)	mV	0.96	1.2	1.8	2.40	3.60	4.80	7.2	9.6	12	18	36	72
Accuracy (0.1%Vo Rated+0.1% of Vo Actual Output)	mV	16	20	30	40	60	80	120	160	200	300	600	120
, ,													
4. Readback Current	^	48	39.6	26.4	19.8	13.2	10.2	6.6	F O	4.0	2.6	1.3	0.7
Resolution (0.012% of lo Rated) Accuracy (0.3% of lo Rated+0.1% of lo Actual Output) (*13	mA) mA	1600	1320	880	660	440	340	6.6 220	5.0 168	132	88	44	22
Accountable (0.5% of 10 Nateuro. 1% of 10 Actual Output) (13	, IIIA	1000	1320	000	000	440	340	220	100	132	00		
5. OVP/UVL Programming													
Resolution (0.1% of Vo Rated)	mV mV	8 80	100	15 150	200	300	400	600	800	1000	150 1500	3000	600
Accuracy (1% of Vo Rated)													

- *1: Minimum voltage is guaranteed to maximum 0.2% of rated output voltage.
- *2: Minimum current is guaranteed to maximum 0.4% of rated output current.
- *3: For cases where conformance to various safety standards (UL, IEC, etc) is required, to be described as 190-240Vac (50/60Hz) for single phase and 3-Phase 208V models, and 380~415Vac (50/60Hz) for 3-Phase 400V models.
- *4: Single-Phase and 3-Phase 208V models: At 208Vac input voltage, 3-Phase 400V: At 380Vac input voltage. With rated output power.

 *5: Not including EMI filter inrush current, less than 0.2mSec.

 *6: Single-Phase and 3-Phase 208V models: 170~265Vac, constant load. 3-Phase 400V
- models: 342~460Vac, constant load.
- *7: From No-Load to Full-Load, constant input voltage. Maximum drop in Remote Sense.
- *8: For 8V~300V models: Measured with JEITA RC-9131A (1:1) probe. For 600V model: Measured with 10:1 probe.
- *9: From 10% to 90% or 90% to 10% of Rated Output Voltage, with rated, resistive load. *10:From 90% to 10% of Rated Output Voltage.
- *11: For load voltage change, equal to the unit voltage rating, constant input voltage.
- *12: For 8V-15V models the ripple is measured from 2V to rated output voltage and rated output current. For other models, the ripple is measured at 10~100% of rated output voltage and rated output current.
- *13: The Constant Current programming readback and monitoring accuracy does not include the warm-up and Load regulation thermal drift.

General Specifications Genesys™ 3.3kW

2.1 INPUT CHARA	CTERISTICS	GEN	8-400	10-330	15-220	20-165	30-110	40-85	60-55	80-42	100-33	150-22	300-11	600-5.5
1. Input voltage/freq. (*3) Single Phase,230V models: 170~265Vac, 47~63Hz														
		VAC	VAC 3-Phase, 208V models: 170~265Vac, 47~63Hz											
			3-Phase, 400V models: 342~460Vac, 47~63Hz											
2. Maximum	Single Phase,230V models:		24	24	24	24	24	24	23	23	23	23	23	23
Input current at 100% load	3-Phase, 208V models:	A	15	15	15	15	15	15	14.5	14.5	14.5	14.5	14.5	14.5
at 100 % load	3-Phase, 400V models:		7.5	7.5	7.5	7.5	7.5	7.5	7	7	7	7	7	7
Power Factor (T	yp)		Single Ph	ase models	: 0.99@23	0Vac, rated	d output por	ver. 3-Phas	se models:	0.94@208	/380Vac, rat	ted output p	ower.	
4. Efficiency (*4)		%	82	84	84	86	86	88	88	88	88	88	88	87
5. Inrush Current (*5)		_	Single-Phase and 3-Phase 208V models: Less than 50A											
		A	3-Phase 400V models: Less than 20A											
6. Hold-up time (Tr	(q _V	mS 10mSec for Single-Phase and 3-phase 208V models, 6mSec for 3-Phase 400V models. Rated output power.												

2.2 POWER SUPPLY CONFIGURATION

1. Parallel Operation	Up to 4 identical units in master/slave mode
2. Series Operation	Up to 2 identical units. with external diodes. 600V Max to Chassis ground

2.3 ENVIRONMENTAL CONDITIONS

Operating temp	0~50°C, 100% load.
2. Storage temp	-30~85°C
3. Operating humidity	20~90% RH (non-condensing).
Storage humidity	10~95% RH (non-condensing).
5. Vibration	MIL-810F, method 514.5, The EUT is fixed to the vibrating surface.
6. Shock	Less than 20G , half sine , 11mSec. Unit is unpacked.
7. Altitude	Operating: 10000ft (3000m), Derate output current by 2%/100m above 2000m, Alternatively, derate maximum ambient temp. by 1°C/100m above 2000m. Non operating: 40000ft (12000m).
8. RoHS Compliance	Complies with the requirements of RoHS directive.

2.4 EMC

Z.4 LIVIC	
1.Applicable Standards:	
2.ESD	IEC1000-4-2. Air-disch8KV, contact disch4KV
3. Fast transients	IEC1000-4-4. 2KV
4. Surge immunity	IEC1000-4-5. 1KV line to line, 2KV line to ground
5. Conducted immunity	IEC1000-4-6, 3V
6.Radiated immunity	IEC1000-4-3, 3V/m
7. Magnetic field immunity	EN61000-4-8, 1A/m
8. Voltage dips	EN61000-4-11
9.Conducted emission	EN55022A, FCC part 15-A, VCCI-A.
10. Radiated emission	EN55022A, FCC part 15-A, VCCI-A.

2.5 SAFETY

1.Applicable standards:	CE Mark, UL60950,EN60950 listed. Vout≤40V:Output is SELV , IEEE/Isolated analog are SELV.				
	40 <vout≤400v: analog="" are="" hazardous,="" ieee="" is="" isolated="" output="" selv.<="" td=""></vout≤400v:>				
	400 <vout≤600v:output analog="" are="" hazardous,="" ieee="" is="" isolated="" not="" selv.<="" td=""></vout≤600v:output>				
2.Withstand voltage	Vout≤40V models :Input-Outputs (SELV): 4242VDC 1min, Input-Ground: 2828VDC 1min.				
	40 <vout≤100v 1min,="" 1min.<="" 2600vdc="" 4242vdc="" input-haz.="" input-selv:="" models:="" output:="" td=""></vout≤100v>				
	Hazardous Output -SELV: 1900VDC 1min, Hazardous Output-Ground:1200VDC 1min. Input-Ground: 2828VDC 1min.				
	100 <vout≤600v 1min,="" 1min.<="" 4000vdc="" 4242vdc="" input-haz.="" input-selv:="" models:="" output:="" td=""></vout≤600v>				
	Hazardous OutputSELV: 3550VDC 1min. Hazardous Output-Ground: 2670VDC 1min. Input-Ground: 2828VDC 1min.				
3.Insulation resistance	More than 100Mohm at 25°C , 70% RH.				

2.6 MECHANICAL CONSTRUCTION

1. Cooling	Forced air flow: from front to rear. No ventilation holes at the top or bottom of the chassis; Variable fan speed.		
2. Dimensions (WxHxD)	W: 423mm, H: 88mm, D: 442.5mm (excluding connectors, encoders, handles, etc.)		
3. Weight	13 kg.		
4. AC Input connector (with Protective Cover)	Single Phase,230V models, Power Combicon PC 6-16/3-GF-10,16 series, with Strain relief.		
	3-Phase, 208V & 400V models, Power Combicon PC 6-16/4-GF-10,16 series, with Strain relief.		
5.Output connectors	8V to 100V models: Bus-bars (hole Ø 10.5mm). 150V to 600V models: wire clamp connector, Phoenix P/N: FRONT-4-H-7.62		

2.7 RELIABILITY SPECS

1. Warranty	5 years.	
-------------	----------	--

All specifications subject to change without notice.

Outline Drawing Genesys™ 3.3kW Units

3 Phase Input Connector

536.6 (21.125') A A A A 60.5 ±0.50 (2.381') (3.625') (3.625') (17.421')

NOTE

- 1. Bus bars for 8V to 100V models (shown)
 Wire clamp connector for 150V to 600V models
- 2. Plug connectors included with the power supply
- Chassis slides mounting holes #10-32 marked "A"
 GENERAL DEVICES P/N: C-300-S-116 or equivalent

Genesys™ Power Parallel and Series Configurations

Parallel operation - Master/Slave:

Active current sharing allows up to four identical units to be connected in an auto-parallel configuration for four times the output power.

In Advanced Parallel Master/Slave Mode, total current is programmed and reported by the Master, Up to four supplies act as one.

Series operation

Up to two units may be connected in series to increase the output voltage or to provide bipolar output. (Max 600V to Chassis Ground).

Remote Programming via RS-232 & RS-485 Interface

Standard Serial Interface allows daisy-chain control of up to 31 power supplies on the same communication bus with built-in RS-232 & RS-485 Interface.

Program Current

Measure Current

Current Foldback shutdown

P/N: IEEE

P/N: LAN

Programming Options (Factory installed)

Digital Programming via IEEE Interface

- IEEE 488.2 SCPI Compliant
- Program Voltage
- Measure Voltage
- Over Voltage setting and shutdown
- Error and Status Messages
- New! Multi-Drop
 - Allows IEEE Master to control up to 31 slaves over RS-485 daisy-chain
 - Only the Master needs be equipped with IEEE Interface

Isolated Analog Programming

Four Channels to Program and Monitor Voltage and Current.

Isolation allows operation with floating references in harsh electrical environments.

Choose between programming with Voltage or Current.

Connection via removable terminal block: Phoenix MC1.5/8-ST-3.81.

• Voltage Programming, user-selectable 0-5V or 0-10V signal. P/N: IS510

Power supply Voltage and Current Programming Accuracy ±1% Power supply Voltage and Current Monitoring Accuracy ±1.5%

 Current Programming with 4-20mA signal. P/N: IS420

Power supply Voltage and Current Programming Accuracy ±1% Power supply Voltage and Current Monitoring Accuracy ±1.5%

LAN Interface

• Meets all LXI-C Requirements

- Address Viewable on Front Panel
- Fixed and Dynamic Addressing
- Compatible with most standard Networks

LXI[™] Compliant to Class C VISA & SCPI Compatible

- LAN Fault Indicators
- Auto-detects LAN Cross-over Cable
- Fast Startup

Power Supply Identification / Accessories How to order

GEN 400 Factory Options: Factory AC Input Options: Series Output Output Option: IEEE 1P230 (Single Phase 170~265VAC) Name Voltage Current IS510 3P208 (Three Phase 170~265VAC) (0~8V)(0~400A)IS420 3P400 (Three Phase 342~460VAC) LAN

Models 3.3kW

	Output	Output	Output
Model	Voltage	Current	Power
	VDC	(A)	(W)
GEN 8-400	0~8V	0~400	3200
GEN 10-330	0~10V	0~330	3300
GEN 15-220	0~15V	0~220	3300
GEN 20-165	0~20V	0~165	3300
GEN 30-110	0~30V	0~110	3300
GEN 40-85	0~40V	0~85	3400

	Output	Output	Output
Model	Voltage	Current	Power
	VDC	(A)	(W)
GEN 60-55	0~60V	0~55	3300
GEN 80-42	0~80V	0~42	3360
GEN 100-33	0~100V	0~33	3300
GEN 150-22	0~150V	0~22	3300
GEN 300-11	0~300V	0~11	3300
GEN 600-5.5	0~600V	0~5.5	3300

Factory option P/N

RS-232/RS-485 Interface built-in Standard
GPIB Interface
Voltage Programming Isolated Analog Interface
Current Programming Isolated Analog Interface
LAN Interface (Complies with LAT Class C)
LAN

Accessories

1. Serial Communication cable

RS-232/RS-485 cable is used to connect the power supply to the Host PC.

Mode	RS-485	RS-232	RS-232
PC Connector Communication Cable Power Supply Connector	DB-9F Shield Ground L=2m EIA/TIA-568A (RJ-45)	DB-9F Shield Ground L=2m EIA/TIA-568A (RJ-45)	DB-25F Shield Ground L=2m EIA/TIA-568A (RJ-45)
P/N	GEN/485-9	GEN/232-9	GEN/232-25

2. Serial link cable*

Daisy-chain up to 31 Genesys[™] power supplies.

Mode	Power Supply Connector	Communication Cable	P/N
RS-485	EIA/TIA-568A (RJ-45)	Shield Ground L=50cm	GEN/RJ45

^{*} Included with power supply

Genesys™

Programmable DC Power Supplies
5KW in 2U
Built in RS-232 & RS-485 Interface
Advanced Parallel Standard

Optional Interfaces:

LXI Compliant LAN

IEEE488.2 SCPI (GPIB)

Isolated Analog Programming

TDK·Lambda

The Genesys™ family of programmable power supplies sets a new standard for flexible, reliable, AC/DC power systems in OEM, Industrial and Laboratory applications.

Features include:

- High Power Density 5kW in 2U
- Wide Range of popular worldwide AC inputs, 3ø (208VAC, 400VAC)
- Active Power Factor Correction (Three-Phase AC Input)
- Output Voltage up to 600V, Current up to 600A
- Built-in RS-232/RS-485 Interface Standard
- Global Commands for Serial RS-232/RS-485 Interface
- Auto-Re-Start / Safe-Start: user selectable
- Last-Setting Memory
- High Resolution 16 bit ADCs & DACs
- Low Ripple & Noise
- Front Panel Lock selectable from Front Panel or Software
- Reliable Encoders for Voltage and Current Adjustment
- Constant Voltage/Constant Current auto-crossover
- Parallel Operation with Active Current Sharing; up to four identical units.
- Advanced Parallel Master / Slave. Total Current is Programmed and Measured via the Master.
- Independent Remote ON/OFF and Remote Enable/Disable
- External Analog Programming and Monitoring (user selectable 0-5V & 0-10V)
- Reliable Modular and SMT Design
- 19" Rack Mount capability for ATE and OEM applications
- Optional Interfaces

Isolated Analog Programming and Monitoring Interface (0-5V/0-10V & 4-20mA) IEEE 488.2 SCPI (GPIB) Multi-Drop

LXI Compliant LAN

- LabView[®] and LabWindows[®] drivers
- Five Year Warranty

Worldwide Safety Agency Approvals; CE Mark for LVD and EMC Regulation

Applications

Genesys™ power supplies have been designed to meet the demands of a wide variety of applications.

System Designers will appreciate new, standard, remote programming features such as Global commands. Also, new high-speed status monitoring is available for the RS-485 bus.

Test Systems using the IEEE-488 bus may achieve significant cost savings by incorporating the Optional IEEE Multi-Drop Interface for a Master and up to 30 RS-485 Multi-Drop Slaves.

Higher power systems can be configured with up to four 5kW modules. Each module is 2U with zero space between them (zero stack).

Flexible configuration is provided by the complete Genesys™ Family: 1U 750W Half-Rack, 1U 750W/1500W 2U 3.3kW/5kW Full-Rack. All are identical in Front Panel, Rear Panel Analog, and all Digital Interface Commands.

OEM Designers have a wide variety of Inputs and Outputs from which to select depending on application and location.

Front Panel Description

- 1. ON/OFF Switch
- 2. Air Intake allows zero stacking for maximum system flexibility and power density.
- 3. Reliable encoder controls Output Voltage, Address, OVP and UVL settings.
- 4. Volt Display shows Output Voltage and directly displays OVP, UVL and Address settings.
- 5. Reliable encoder controls Output Current, sets baudrate and Advanced Parallel mode.
- 6. Current Display shows Output Current and displays Baud rate. Displays total current in Parallel Master/Slave Mode
- 7. Function/Status LEDs:
 - Alarm
- Fine Control
- Preview Settings

- Foldback Mode
- Remote Mode
- Output On
- 8. Pushbuttons allow flexible user configuration
 - Coarse and Fine adjustment of Output Voltage/Current and Advanced Parallel Master or Slave
 - Preview settings and set Voltage/Current with Output OFF, Front Panel Lock
 - Parallel Master/Slave
 - Set OVP and UVL Limits
 - Set Current Foldback Protection
 - Go to Local Mode and select Address and Baud rate
 - Output ON/OFF and Auto-Re-Start/Safe-Start Mode

Rear Panel Description

- 1. Remote/Local Output Voltage Sense Connections.
- 2. DIP Switches select 0-5V or 0-10V Programming and other functions.
- 3. DB25 (Female) connector allows (Non-isolated) Analog Program and Monitor and other functions.
- 4. RS-485 OUT to other Genesys™ Power Supplies.
- 5. RS-232/RS-485 IN Remote Serial Programming.
- 6. Output Connections: Rugged busbars (shown) for up to 100V Output; wire clamp connector for Outputs >100V.
- 7. Exit air assures reliable operation when zero stacked.
- 8. Input: 208 & 400VAC Three Phase, 50/60 Hz
 AC Input Connector: PHOENIX CONTACT Power Combicon PC 6/... Series with strain relief.
- 9. Optional Interface Position for IEEE 488.2 SCPI (shown) or Isolated Analog Interface or LAN Interface.

Genesvs ™ 5kW Specifications

1.0 MODEL		GEN	8-600	10-500	16-310	20-250	30-170	40-125	60-85	80-65	100-50	150-34	300-17	600-8.5
1.Rated output voltage(*1)		V	8	10	16	20	30	40	60	80	100	150	300	600
2.Rated Output Current(*2)		Α	600	500	310	250	170	125	85	65	50	34	17	8.5
3.Rated Output Power		W	4800	5000	4960	5000	5100	5000	5100	5200	5000	5100	5100	5100
4.Development Priority			Α	С	В	С	В	В	Α	С	С	Α	В	Α
1.1 CONSTANT VOLTAGE MOD)E													
1.Max.line regulation (0.01% of		l mV	0.8	1.0	1.6	2	3	4	6	8	10	15	30	60
2.Max load regulation (0.015% of		mV	6.2	6.5	7.4	8	9.5	11	14	17	20	27.5	50	95
3.Ripple and noise p-p 20MHz (mV	75	75	7.5	75	75	75	75	85	100	120	300	500
4.Ripple r.m.s 5Hz~1MHz	0)	mV	10	10	10	10	10	10	10	12	15	25	35	120
5.Remote sense compensation/	wire	V	2	2	2	2	5	5	5	5	5	5	5	5
6.Temp. coefficient		PPM/°C			d output vol									
7.Temp. stability									arm-up. Co	nstant line	, load & ten	np.		
8.Warm-up drift			Less that	n 0.05% of	rated outp	ut voltage-	-2mV over	30 minutes	s following	ower On.				
9.Up-prog. response time, 0~Vo	Rated (*9)	mS			30	mS					50mS			100
10.Down-prog response time	Full-load (*9)	mS	15		50			80			10	00		200
	No-load (*10)	mS	400	500	600	700	800	900	1000	1200	1500	2000	2500	3000
11.Transient response time		mS	current. C	Output set-	point: 10-10	00%, local	sense.		ut for a load			ated output		
1.2 CONSTANT CURRENT MOD	DE													
1.Max.line regulation (0.05% of	lo rated)(*6)	mA	300	250	155	125	85	62.5	42.5	32.5	25	17	8.5	4.25
2.Max.load regulation (0.1% of I		mA	600	500	310	250	170	125	58	65	50	34	17	8.5
3.Ripple r.m.s 5Hz~1MHz. (*12)	mA	1950	1800	1400	1000	460	300	150	120	100	90	30	15
4.Temp. coefficient		PPM/°C	100PPM/°C from rated output current, following 30 minutes warm-up.											
5.Temp. stability			0.05% of rated lout over 8hrs. interval following 30minutes warm-up. Constant line, load & temperature.											
6.Warm-up drift			8V~16V models: Less than ±0.5% of rated output current over 30 minutes following power On. 20V~600V models: Less than ±0.25% of rated output current over 30 minutes following power On.											
1.3 PROTECTIVE FUNCTIONS	;		1 0 4050/	0 1 1										
1. OCP			0~105% Constant Current											
2. OCP Foldback			Output shut down when power supply change from CV to CC. User selectable.											
OVP type OVP trip point			Inverter shut-down, manual reset by AC input recycle or by OUT button or by communication port command. 0.5-10V 0.5-12V 1-19V 1-24V 2-36V 2-44.1V 5-66.15V 5-88.2V 5-110.25V 5-165.3V 5-330.7V 5-661.5V											
Output Under Voltage Limit			Preset by front panel or communication port. Prevents from adjusting Vout below limit.											
6. Over Temp. Protection			User selectable , latched or non-latched.											
1.4 ANALOG PROGRAMMING	AND MONITORING		1 0001 001	cotable , la	torica or ric	n latorica.								
1.Vout Voltage Programming			0~100%,	0~5V or 0	~10V, user	select. Ac	curacy and	d linearity:±	0.5% of rate	ed Vout.				
2.lout Voltage Programming (*13	3)		0~100%, 0~5V or 0~10V, user select. Accuracy and linearity:±1% of rated lout.											
3. Vout Resistor Programming			0~100%, 0~5/10Kohm full scale,user select.,Accuracy and linearity: ±1% of rated Vout.											
4.lout Resistor Programming (*1	13)		0~100%, 0~5/10Kohm full scale,user select. Accuracy and linearity:±1.5% of rated lout.											
5.On/Off control (rear panel)			By electrical. Voltage: 0~0.6V/2~15V,or dry contact ,user selectable logic.											
6.Output Current monitor (*13)			0~5V or 0~10V, Accuracy:±1%, user selectable.											
7.Output Voltage monitor			0~5V or 0~10V ,Accuracy:±1% ,user selectable.											
8.Power Supply OK signal			TTL high (4~5V) -OK, 0V-Fail 500ohm series resistance.											
9. CV/CC Indicator			Open collector, CC mode: On, CV mode: Off, Maximum voltage: 30V, maximum sink current: 10mA											
10. Enable/Disable			Dry contact. Open:off , Short: on. Max. voltage at Enable/Disable in: 6V. By electrical signal or Open/Short: 0~0.6V or short: Remote, 2~15V or open: Local.											
11. Local/Remote analog contro														
12. Local/Remote analog contro	I Indicator		Open co	llector, Loc	aı: Off, Rer	note: On. I	viaximum	voltage: 30	V, maximun	n sink curr	ent: 10mA.			
1.5 FRONT PANEL			Lac											
1.Control functions								arse and fin	e adjustme	nt selectal	ble).			
					djust by Vo									
									ontrol (CV t		to local co	ntrol.		
								coder. Num	ber of addr	esses:31.				
					tomatic res									
			I Bould rote	a calaction	· 1200 2400	1 48UU 060	111 and 10	200						

3.Indications	Voltage, Current, Alarm, Fine, Preview, Foldback, Local, Output On, Front Panel Lock, CV/CC.					

1.6 Interface RS-232&RS-485 or Optio	nal Gl	PIB / LA	N Inter	face									
Model	V	8	10	16	20	30	40	60	80	100	150	300	600
Remote Voltage Programming (16 bit)													
Resolution (0.012% of Vo Rated)	mV	0.96	1.2	1.92	2.4	3.6	4.8	7.2	9.6	12	18	36	72
Accuracy (0.1% of Vo Rated)	mV	8	10	15	20	30	40	60	80	100	150	300	600
2. Remote Current Programming (16 bit)													
Resolution (0.012% of lo Rated)	mA	72	60	37.2	30	20.4	15	10.2	7.8	6.0	4.08	2.04	1.02
Accuracy (0.3% of lo Rated+0.1% of lo Actual Output)(*13)	mA	2400	2000	1240	1000	680	500	340	260	200	136	68	34
3. Readback Voltage													
Resolution (0.012% of Vo Rated)	mV	0.96	1.2	1.92	2.40	3.60	4.80	7.2	9.6	12	18	36	72
Accuracy (0.15% of Vo Rated)	mV	12	15	24	30	45	60	90	120	150	225	450	900
4. Readback Current													
Resolution (0.012% of lo Rated)	mA	72	60	37.2	30	20.4	15	10.2	7.8	6.0	4.08	2.04	1.02
Accuracy (0.4% of lo Rated)(*13)	mA	2400	2000	1240	1000	680	500	340	260	200	136	68	34
5. OVP/UVL Programming													
Resolution (0.1% of Vo Rated)	mV	8	10	16	20	30	40	60	80	100	150	300	600
Accuracy (1% of Vo Rated)	mV	80	100	160	200	300	400	600	800	1000	1500	3000	6000

Baud rate selection: 1200,2400,4800,9600 and 19,200.

Voltage: 4 digits , Accuracy: 0.5% of rated output Voltage ± 1 count. Current: 4 digits, Accuracy: 0.5% of rated output current ±1 count.

- *1: Minimum voltage is guaranteed to maximum 0.2% of rated output voltage.
- *2: Minimum current is guaranteed to maximum 0.4% of rated output current.
- *3: For cases where conformance to various safety standards (UL, IEC, etc) is required, to be described as 190-240Vac (50/60Hz) for 3-Phase 208V models, and 380~415Vac (50/60Hz) for 3-Phase 400V models.
- *4: 3-Phase 208V models: At 208Vac input voltage, 3-Phase 400V:
- At 380Vac input voltage. With rated output power.
 *5: Not including EMI filter inrush current, less than 0.2mSec.
- *6: 3-Phase 208V models: 170~265Vac, constant load. 3-Phase 400V models: 342~460Vac, constant load.

- *7: From No-Load to Full-Load, constant input voltage. Maximum drop in Remote Sense.
- *8: For 8V~300V models: Measured with JEITA RC-9131A (1:1) probe. For 600V model: Measured with 10:1 probe.

 *9: From 10% to 90% or 90% to 10% of Rated Output Voltage, with rated, resistive load.
- *10:From 90% to 10% of Rated Output Voltage.
- *11: For load voltage change, equal to the unit voltage rating, constant input voltage.
- *12: For 8V–16V models the ripple is measured from 2V to rated output voltage and rated output current. For other models, the ripple is measured at 10~100% of rated output voltage and rated output current.
- *13: The Constant Current programming readback and monitoring accuracy does not include the warm-up and Load regulation thermal drift.

2.Display

General Specifications Genesys™ 5kW

2.1 INPUT CHARACTER	ISTICS	GEN	8-600	10-500	16-310	20-250	30-170	40-125	60-85	80-65	100-50	150-34	300-17	600-8.5
1. Input voltage/freq. (*3	3)		3-Phase	200Vac, 2	08Vac and	230Vac M	odels : 170	0~265Vrms	, 47~63Hz					
		VAC	3-Phase,	400V mod	els: 342~46	60Vac, 47~6	63Hz							
	T													
MaximumInput	3-Phase, 170V models:	(A)	21	22	22	22	22	22	22	22	22	22	22	22
currentat 100% load	3-Phase, 342V models:	(//)	10.5	11	11	11	11	11	11	11	11	11	11	11
3. Power Factor (Typ)					AND 208V									
4. INRUSH PEAK CURREN	Α	3-Phase 2	200V: 50A,	3-Phase 4	00V: 20A. I	Not includi	ng the EMI	filter inrush	current, le	ss than 0.2	mSec.			
5. EFFICIENCY AT 200V A	ND 380V (A)	%	83	84	84	86	86	88	90	88	88	88	88	88
6. EFFICIENCY AT 170V A	ND 342V (A)	%	83	84	84	86	86	88	90	88	88	88	88	88
7. HOLD UP TIME (CV MODE) mS		mS	5mS Typic	cal										
8. PHASE IMBALANCE		%	≤5%											
9. LEAKAGE CURRENT			LESS TH	AN 3mA		,			,			,		

2.2 POWER SUPPLY CONFIGURATION

Parallel Operation	Up to 4 identical units in master/slave mode
2. Series Operation	Up to 2 identical units. with external diodes. 600V Max to Chassis ground

2.3 ENVIRONMENTAL CONDITIONS

1. Operating temp	0-50°C, 100% load.
2. Storage temp	-20~85°C
3. Operating humidity	20~90% RH (non-condensing).
4. Storage humidity	10~95% RH (non-condensing).
5. Vibration	MIL-810F, method 514.5 , The EUT is fixed to the vibrating surface.
6. Shock	Less than 20G , half sine , 11mSec. Unit is unpacked.
7. Altitude	Operating: 10000ft (3000m), Derate output current by 2%/100m above 2000m, Non operating: 40000ft (12000m).
8. RoHS Compliance	Complies with the requirements of RoHS directive.

2.4 EMC

1.Applicable Standards:	
2.ESD	IEC1000-4-2. Air-disch8KV, contact disch4KV
3. Fast transients	IEC1000-4-4. 2KV
4. Surge immunity	IEC1000-4-5. 1KV line to line, 2KV line to ground
5.Conducted immunity	IEC1000-4-6, 3V
6.Radiated immunity	IEC1000-4-3, 3V/m
7.Magnetic field immunity	EN61000-4-8, 1A/m
8. Voltage dips	EN61000-4-11
9.Conducted emission	EN55022A, FCC part 15-A, VCCI-A.
10. Radiated emission	EN55022A, FCC part 15-A, VCCI-A.

2.5 SAFETY

utput is SELV , IEEE/Isolated analog are SELV.
d analog are SELV.
ed analog are not SELV.
C 1min, Input-Ground: 2828VDC 1min.
DC 1min, Input-SELV: 4242VDC 1min.
dous Output-Ground:1200VDC 1min. Input-Ground: 2828VDC 1min.
VDC 1min, Input-SELV: 4242VDC 1min.
lous Output-Ground:2670VDC 1min. Input-Ground: 2828VDC 1min.

2.6 MECHANICAL CONSTRUCTION

1. Cooling	Forced air flow: from front to rear. No ventilation holes at the top or bottom of the chassis; Variable fan speed.
2. Dimensions (WxHxD)	W: 423mm, H: 88mm, D: 442.5mm (excluding connectors, encoders, handles, etc.)
3. Weight	16 kg.
4. AC Input connector (with Protective Cover)	3-Phase, 208V & 400V models, Power Combicon PC 6-16/4-GF-10,16 series, with Strain relief.
5.Output connectors	8V to 100V models: Bus-bars (hole Ø 10.5mm). 150V to 600V models: wire clamp connector, Phoenix P/N: FRONT-4-H-7.62

2.7 RELIABILITY SPECS

LI RELIABILITY OF EOU							
1. Warranty	5 years.						

All specifications subject to change without notice.

Outline Drawing Genesys™ 5kW Units

NOTE

- 1. Bus bars for 8V to 100V models (shown)
 Wire clamp connector for 150V to 600V models
- 2. Plug connectors included with the power supply
- Chassis slides mounting holes #10-32 marked "A"
 GENERAL DEVICES P/N: C-300-S-116 or equivalent

Genesys™ Power Parallel and Series Configurations

Parallel operation - Master/Slave:

Active current sharing allows up to four identical units to be connected in an auto-parallel configuration for four times the output power.

In Advanced Parallel Master/Slave Mode, total current is programmed and reported by the Master, Up to four supplies act as one.

Series operation

Up to two units may be connected in series to increase the output voltage or to provide bipolar output. (Max 600V to Chassis Ground).

Remote Programming via RS-232 & RS-485 Interface

Standard Serial Interface allows daisy-chain control of up to 31 power supplies on the same communication bus with built-in RS-232 & RS-485 Interface.

 Program Current Measure Current

Current Foldback shutdown

Programming Options (Factory installed)

Digital Programming via IEEE Interface

- IEEE 488.2 SCPI Compliant
- Program Voltage
- Measure Voltage
- · Over Voltage setting and shutdown
- Error and Status Messages
- New! Multi-Drop
 - Allows IEEE Master to control up to 31 slaves over RS-485 daisy-chain
 - Only the Master needs be equipped with IEEE Interface

Isolated Analog Programming

Four Channels to Program and Monitor Voltage and Current.

Isolation allows operation with floating references in harsh electrical environments.

Choose between programming with Voltage or Current.

Connection via removable terminal block: Phoenix MC1,5/8-ST-3.81.

• Voltage Programming, user-selectable 0-5V or 0-10V signal. P/N: IS510

Power supply Voltage and Current Programming Accuracy ±1% Power supply Voltage and Current Monitoring Accuracy ±1.5%

• Current Programming with 4-20mA signal. P/N: IS420

Power supply Voltage and Current Programming Accuracy ±1% Power supply Voltage and Current Monitoring Accuracy ±1.5%

LAN Interface LXI Compliant to Class C P/N: LAN

- Meets all LXI-C Requirements
- Address Viewable on Front Panel
- Fixed and Dynamic Addressing
- Compatible with most standard Networks
- VISA & SCPI Compatible
- LAN Fault Indicators
- Auto-detects LAN Cross-over Cable
- Fast Startup

P/N: IEEE

Power Supply Identification / Accessories How to order

GEN 600 Factory Options: Factory AC Input Options: Series Output Output Option: IEEE 3P208 (Three Phase 170~265VAC) Name Voltage Current IS510 3P400 (Three Phase 342~460VAC) (0~8V)(0~600A) IS420 LAN

Models 5kW

	Output	Output	Output
Model	Voltage	Current	Power
	VDC	(A)	(W)
GEN 8-600	0~8V	0~600	4800
GEN 10-500	0~10V	0~500	5000
GEN 16-310	0~16V	0~310	4960
GEN 20-250	0~20V	0~250	5000
GEN 30-170	0~30V	0~170	5100
GEN 40-125	0~40V	0~125	5000

	Output	Output	Output
Model	Voltage	Current	Power
	VDC	(A)	(W)
GEN 60-85	0~60V	0~85	5100
GEN 80-65	0~80V	0~65	5200
GEN 100-50	0~100V	0~50	5000
GEN 150-34	0~150V	0~34	5100
GEN 300-17	0~300V	0~17	5100
GEN 600-8.5	0~600V	0~8.5	5100

Factory option P/N

RS-232/RS-485 Interface built-in Standard GPIB Interface IEEE
Voltage Programming Isolated Analog Interface IS510
Current Programming Isolated Analog Interface IS420
LAN Interface (Complies with LXI Class C) LAN

Accessories

1. Serial Communication cable

RS-232/RS-485 cable is used to connect the power supply to the Host PC.

Mode	RS-485	RS-232	RS-232
PC Connector Communication Cable Power Supply Connector	DB-9F Shield Ground L=2m EIA/TIA-568A (RJ-45)	DB-9F Shield Ground L=2m EIA/TIA-568A (RJ-45)	DB-25F Shield Ground L=2m EIA/TIA-568A (RJ-45)
P/N	GEN/485-9	GEN/232-9	GEN/232-25

2. Serial link cable*

Daisy-chain up to 31 Genesys[™] power supplies.

Mode	Power Supply Connector	Communication Cable	P/N
RS-485	EIA/TIA-568A (RJ-45)	Shield Ground L=50cm	GEN/RJ45

^{*} Included with power supply

Also available, Genesys™
1U Half Rack 750W
1U full Rack 750W/1500W
2U full Rack 3300W

